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New approach to the quantum non-linear Schrodinger equation 
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Federal Republic of Germany 
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Abstract. A new technique is proposed which allows us to avoid the space- and uv- 
cutoffs when quantising the field-theoretic models integrable by means of the quantum 
spectral transform (R-matrix) method. The technique is based on a new definition of 
the monodromy matrix for the infinite interval. For the non-linear Schrodinger equation 
(repulsive case, zero density) the known excitation spectrum is reproduced. 

1. Introduction 

The quantisation of integrable field-theoretic models in the framework of the quantum 
spectral transform method (QSTM), see [l-31, is performed usually in a complicated, 
many-stage way including transition to a discrete model in finite volume and subse- 
quently removing the ultraviolet and space cutoffs, cf the sine-Gordon model [ l ] .  Rare 
exclusions are provided by the models having a ferromagnetic vacuum for which the 
technique using the monodromy matrix T(u)  on the infinite interval is elaborated within 
QSTM [2, 31. The technique allows us to investigate immediately continuous models 
in infinite volume, e.g. the non-linear Schrodinger equation [3] and the continuous 
su(1,l)-magnet [4]. It is based on the commutation relations 

between the matrix elements of T(u)  

The relations (1) combined with the condition that the vacuum IO) is an eigenstate 
of A(u) 

N u )  10) = 10) 

allow us to interpret A(u) as a generating function of commuting quantum integrals of 
motion and B(u) as a creation operator for excitations. Unfortunately, the algebra of 
matrix elements of T(u)  is ill defined due to a singularity in the commutator [C(u), B(o)] ; 

t Permanent address: Steklov Mathematical Institute, Leningrad Branch, Fontanka 27, 191011 Leningrad, 
USSR. 
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see [3]. In addition, for the majority of interesting models, the technique does not work. 
The reason is that the coefficient t ( U  - U) in the commutation relation ( l b )  depends on 
the excitation spectrum of the system which, in fact, is to be determined [l]. 

It is possible to break the vicious circle by means of the new approach proposed in 
the present paper. The approach is based on replacing the matrix T(u) corresponding 
to the transition from -cc to +m by a new matrix T(u)  corresponding to the transition 
(xo,+co,-co,xo) where xo is some fixed point. In contrast with T(u) the matrix 
T(u)  satisfies the same commutation relations as the monodromy matrix for a finite 
interval [ 131 

(3) 

where T( ' )  = T €3 id, T(2)  = id Q T .  It is remarkable that the algebra (3) is determined 
only by the properties of the local L-operator and does not depend on those of the 
physical vacuum. The choice of a definite physical vacuum corresponds to the choice 
of some representation of the algebra (3). The representations of (3) connected with 
the infinite-volume systems have a number of specific properties. These are, first, the 
existence of cuts in the plane of the complex argument u of the function T(u) and, 
second, the vanishing of the quantum determinant of the matrix T(u) .  

The problem of finding the excitation spectrum of the system reduces to that of 
determining the common spectrum of a commutative subalgebra t (u )  of the algebra (3). 
To solve the latter problem one cannot, generally speaking, use the so-called algebraic 
Bethe ansatz method [l, 21 since it works only over the ferromagnetic vacuum. That is 
why we use an alternative method, the functional Bethe ansatz (FBA) proposed in [ 5 ] .  
The above-mentioned peculiarities of the representations of (3) for the infinite-volume 
systems lead to noticeable modifications of the FBA scheme in comparison with [ 5 ] .  

In the present paper we realise our program for the simplest integrable model, 
the non-linear Schrodinger equation (NLS), repulsive case, zero density. The details 
of the calculations are, most often, omitted. A more extensive text will be published 
separately. 

R(u, - u2)T(1)(u1)T(2)(u2) = T(2)(U2)T(1)(U1)R(U1 - u2) 

2. New definition of T(u)  

The model in question is described in terms of the pair of canonical fields 
[Y(x), Y'(y)] = 6(x - y ) .  The quantum state space is the Fock space with the vacuum 
defined by Y(x) IO) = 0. Consider the L-operator d/dx - Y ( u , x )  

-iu/2 f i  Y* (x) ) 
9 ( u , x )  = ( f i y ( x )  iu/2 

where c > 0 is the coupling constant. The monodromy matrix S z ( u )  for the interval 
[x-,x+] is defined as 

S:? (u )  =: e 3  9 ( u , x ) d x  : LI' 
where e 3  is the ordered exponential [2, 31. Let us fix a point xo and define the Jost 
matrices by 

s-(u)  = X--+--Co lim ~ c o ( u )  exp(-iiuo3x-) (4a 1 
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The matrix T(u)  used in [2,3] is defined as 

T(u) = Y + ( u ) ~ - ( u ) .  

The commutative family A(u), see (2), is known to serve as a generating function of 
the quantum integrals of motion and contains, in particular, the Hamiltonian 

H = ~ ~ ( Y ~ Y x  + cY*Y"YY) dx. 

Let C,, respectively C-,  denote the upper (lower) complex half-plane Imu > 0, 
respectively < 0. Let us introduce now the matrix F ( u )  by the formula 

where the projection operators P+ - are defined as 

To understand better the origin of the formula ( 5 )  consider s e  finite volume case. 
Let x+ > xo > x-. The matrices Y : : ( u )  = Sg(u)YcO_(u)  and Y ( u )  = S ~ ( u ) Y ~ o + ( u )  
have obviously the same trace t (u)  and both satisfy the commutation relation (3). After 
going to the limit x+ - + +cc and removing the exponential factors (4) the matrix S z ( u )  
goes over into T(u). Let us see what happens with ? ( U )  as x+ - + +CO: 

- 
F ( u )  N S - ( u )  exp{-iu(x+ - x-)03/2}S+(u). 

The factor exp{-iu(x+ - x-)a,/2} behaves like exp{fiu(x+ -x-)/2}P+ for U E C+. 
Cancelling out the scalar factors exp{Tiu(x+ -x-)/2}, which does not affect the relation 
(3), results in the formula (5) foLT(u). 

The matrices Y:I(u) and F ( u )  contain the same information about the finite- 
volume system. This should also be true for the matrices T(u) and S ( u )  in the infinite- 
volume case. The matrix S ( u )  has, however, some advantages discussed already in the 
introduction. 

Using the known properties of Y + ( u )  - [3] one can establish the following properties 
of Y ( u ) .  

(i) S ( u )  is an analytic function of U in the complex plane C except for the real axis 

(ii) S ( u )  satisfies the same relation (3) as the finite-volume monodromy matrix 
R or, equivalently, is analytic for U E C+. 

S:: (u) .  The R matrix in (3) is given by 

R(u)  = U - icB (6) 

where 9" is the permutation operator in C2@C2. In other words, S ( u )  is a representation 
of the algebra defined by the relations (3). 

(iii) The quantum determinant of Y ( u )  vanishes 

9 ( u  + ic)d(u) - g ( u  + ic)%'(u) = 0. 
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(iv) The trace t (u)  = & ( U )  + 9 ( u )  of T(u)  equals A(u)  for u E C ,  and D(u) for 
u E C- thus coinciding with the conventional generating function of integrals of 
motion [2, 31. Note that t (u )  commute 

[ t ( u , ) ,  t(u,)l = 0. 

(v) Let * stand for the Hermitian conjugate with respect to the quantum space. 
Then 

S ' ( u )  = alF(ii)ol. 

W ( u )  10) = 0 
&(U)  IO) = IO) 
& ( U )  IO) = 0 

(vi) The following equalities are valid: 

2 ( u )  IO) = 0 
9 ( u )  (0)  = IO) 

for u E C,;  
for u E C-. 

The eigenvectors of the operators t (u )  can be constructed in the spirit of the 
algebraic Bethe ansatz [l,  23 using &?(U) as the creation operators. In the finite-volume 
case &?(U) is a holomorphic function of u and the eigenvectors are constructed in the 
form &?(nl). . . &?(iN) IO), A,, being real for c > 0. In the infinite-volume case the situation 
is more complicated. Since the function B(u) has the cut along the real axis, one must 
distinguish the values A,, & io for real An eigenstate is then constructed as a sum 
over all possible choices of signs A,, f io in the product &?(I . l ) .  . . &?(iN). 

More precisely, let A be a finite set of real numbers and (A+,A-) be its arbitrary 
partition into two disjoint subsets. The multiparticle eigenstate IA) parametrised by A 
is 

The corresponding eigenvalue z ( U )  of t (u)  is 

and coincides with the well known result [3] for the eigenvalues of A(u). 
One can easily verify the statements made using the commutation relations (3) and 

the property (vi) of F ( u ) .  
The drawback of this method of constructing the eigenvectors of t (u)  is that it uses 

essentially the property (vi) of T ( u )  which is satisfied for a limited number of models. 
Bearing in the mind possible applications to such models as sinh-Gordon and NLS of 
finite density, we shall present an alternative and more general method to diagonalise 
t (u )  which is free of the above restrictions. 

3. Classical case 

First of all, let us replace the matrix F ( u )  by the matrix T(u)  by means of the similarity 
transformation 
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The matrix U performs the isomorphism of Lie algebras U-'(.)U : su(1,l) + 
sl(2,R). The matrix T ( u )  has the same properties (i)-(iv) as F(u). The property (v) is 
replaced by the sl(2, R)-type relation 

T'(u) = T(ii). (10) 
The property (vi) does not hold for T(u) ,  not that we shall use it. 
Now we are going to investigate the representation T ( u )  of the algebra (3) using 

the method proposed in [ 5 ]  which we shall call the functional Bethe ansatz (FBA). 
The main idea of FBA is to realise the space of quantum states as some space of 
functionals on the joint spectrum of the commuting operators B(u). One calculates 
then the explicit form of the operators t (u)  in such a B-representation which allows us 
usually to perform separation of variables for the eigenfunctions of t (u ) .  

To get a hint of the possible structure of the representation T(u)  let us consider 
first the classical case. The classical matrix T(u)  is constructed in the same way as the 
quantum one and has the analogous properties (i)-(v), the property (ii) being replaced 
by the Poisson bracket relation, 

(1 1) {T(1)(U1), T(2)(UZ)) = [r(u1 - U z ) ,  T(1)(u,)T(2)(u2)1 

where r(u)  = -&/U, and the quantum determinant in (iii) being replaced by the 
ordinary determinant of T(u).  In addition, the asymptotic relation is valid for T(u) 

T(u)  + u-++u = - ( :i) u-+kioo. 
- 2 IfIi 

Let us define now the variables p ( A ) ,  q(1.) for real A by the following equations: 

e-'nYil)B(i + io) + e'nYU)B(R - io) = 0 (13a) 
(13b) 
(13c) 

e-iw(4A(A + io) + ew(4A(A - io) = e - ~ i 4  

+io) + e'n4(4D(A - io) = 

To determine p(1J and q ( i )  uniquely we shall select the real solutions of (13). 
The existence of such solutions follows from the conjugation condition (IO) and the 
absence of complex and real zeros of the function B(u)  due to the self-adjointness of 
the corresponding boundary problem for the Dirac operator d / d x  - U-'LZ(u, x) U .  The 
equations (13b) and (13c) for p ( A )  are equivalent by virtue of the identity det T(i) = 1. 

The quantities p(A) and q(2 )  are real, vanish as 1x1 + CO and have canonical Poisson 
brackets 

CPO.) ,P(P))  = { 4 ( 4 ? 4 ( P ) )  = 0 
CP(4, d P ) I  = cs (1. - P )  

which are easily calculated from (13) and (11). The variables p(%)  and q(A) are nothing 
else than the continuous analogue of the variables p n ,  q n  introduced by Flaschka and 
McLaughlin [6] in the finite-volume case. Considering (13) as boundary value problems 
for the analytic functions B ( u ) ,  A(u) ,  D ( u )  one can express them in terms of p(i), q(A):  
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where U E C ,  - and G+(A) - is 

with P standing for the principal value regularisation of l/(A-p). One can also express 
G,(3,) - using the variable d ( A )  = ip(%) +nq(A) which is more convenient for quantisation 

The functions G+(A) and G-(A) deserve a closer look. One can show that they 
coincide with the spectral densities [7] for the Dirac operator d/dx- U-’dp(u,x)U on 
the semi-axis [xo, +CO), respectively (-CO, xo], with appropriate boundary conditions. 
The functions G+(%) - are real and tend to 1 as IAI -+ CO. Using (14) one can define G+(Iv) - 

also by 

(16a) 
(16b) 

G, = [B-’ (E. + iO)A(/I + io) - B-’ (3, - iO)A(A - io)] /2i 
G- = [B-’(E, + iO)D(A + io) - B-’(A - iO)D(A -io)] /2i. 

The Poisson brackets 

then follow immediately from (1 1) .  

4. Quantisation 

Let us return now to the quantum case. According to the FBA scenario described in 
the previous section the first problem is to find the joint spectrum of the commutative 
operator family B(u).  Since the direct spectral analysis of B(u) seems, however, to be 
a rather hard task, we shall try instead to guess the answer. Let us conjecture that 
in the quantum case the rcpresentation (14a) for B(u)  is still valid, q(1) being now 
a commuting family of self-adjoint operators. Let us conjecture also that the joint 
spectrum of q(A) is simple, that is, q(1) can be realised as multiplication operators in 
the Hilbert space of functionals V [q(A)] of real-valued functions q(1). The functionals 
V[q(A)] are supposed to be square integrable with respect to some measure dm which 
is to be calculated later 

The next problem is to find how the operators A(u) and D(u)  act on the functionals 
V[q(A)] .  Let us introduce first the quantum operators G+(I) - by the formulae (16) 
preserving the factor ordering shown there. 



Quantum non-linear Schrodinger equation 3557 

Applying to the first term in (16a) the identity 

B-’ (E.)A(I)  = A(A + ic)B-’ (A + ic) 

which follows from (3) and using the analyticity properties of T(u) one concludes that 
G+(A) is analytic in the strip ImA E (-c,O). Quite analogously, G-(A) is analytic for 
ImA E (0,c). Combining (lo), (3) and (16) one deduces also the conjugation relations 

B’(3”) = B(X) 
Gi(1) - = G+(X - T ic) 

The operators B(u)  and G+(A) - commute as follows: 

B(u)B(u)  = B(u)B(u)  
A - u f i c  

G+(A)B(u) = B (W, (4 I” - U - 

The calculation leading to (20) is quite straightforward though rather long. It uses 
(3) and, in case of (20d), the property (iii) of T(u) .  

Slightly modifying the classical formula (15) for G+(A) - one obtains the quantum 
operator G+(A) - acting on the functionals V [q(A)] 

which can be shown to satisfy the commutation relations (20) with the operator B(u) 
given by (14a). For the integral from A to A ic in (21) to be defined correctly, it is 
sufficient to suppose that the functions q ( A )  are analytic in the strip IIm AI < c + E for 
some E > 0. 

Now we are able to determine the measure dm (18) from the conjugation condition 
(19b). It is most natural to look for the measure dm in the class of Gaussian measures. 
So, let dm be given by the continual integral 

the kernel M ( p ,  v) being real, symmetric and positive definite. The normalisation 
constant .Af in (22) is defined by the condition J 1 dm = 1. 

Calculating the conjugate of G+(A) given by (21) with respect to the Hermitian form 
(18) with dm given by (22) and using the condition (19b), one obtains the following 
equations for the kernel M ( p ,  v)  : 

(23) 

where &+(A) - (3, f io)-’. The shift by ic in E? should be understood as 

E~ (3, ic) = (2 f ic)-’ ~f: ni6 (I f ic). 
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The distribution d(A f ic) is well defined as a linear functional on the functions of the 
real variable A analytic in the strip IIm 2 < c + E .  

Both equations (23) are equivalent since M is real. Being convolution equations, 
they are easily solved by the Fourier transform. The result is 

(24) 
1 712 1 

p 2  c2 sinh2(n/c)p' 
M ( p ,  v )  M ( p  - v )  M ( p )  = - - 

The singularity -2/p2 in (24) is regularised in the standard manner 

+cc q ( p )  + q ( - p )  - 2q(o) dp, 
P 2  

The kernel M ( p  - v )  is obviously real and symmetric. Its positivity follows from 
the positivity of the Fourier transform 

+SI 

M(k)  E [ eikpLM(p) dp = 271 - I k l  > 0. 
J -cc 

For readers' convenience 
J q ( p ) q ( v )  dm which is inverse 

Z(k) E l / M ( k )  

let us present also the covariance kernel A ' ( p  - v )  = 
to M ( p  - v )  : 

As a result, we have constructed some representation of the algebra (20) with the 
involution (19). An equivalent description of the same representation can be given in 
terms of the creation-annihilation operators. 

Let us introduce the fields @(A), @*(A) by the formulae 

It is easy to see that @(A) and @'(%) are conjugate with respect to the scalar product 
(19), (22), (24) and belong to the Fock representation of CCR 

having the vacuum (0) [q(A)]  = 1, @(I,)  IO) = 0. 
Let us introduce also the operators 
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commuting as follows 

Using (14a), (21), (25), (26) one can express B and G in terms of F and F ' :  

B(E, f io) = TiiFi(A)F+(A) - 

G f (A) = [F;(A)]-'F<'(A - f ic). 

Let us define now the operators A(#)  and D(u)  by the formulae (14b) and (14c) pre- 
serving the factor ordering shown there and using for B(u)  and G+(A) the representations 
constructed above. The operator C(u) is then defined as C(u) = B(u+ic)-'D(u+ic)A(u). 

A straightforward, though rather long, calculation shows that the matrix T(u) thus 
constructed has all the necessary properties (i)-(v) . Unfortunately, the conditions (i)- 
(v) do not define T(u)  uniquely. The situation is the same as in case of representations 
of CCR with infinitely many degrees of freedom. 

To sum up, we have constructed two representations of the algebra (3) with the 
involution (10). The first one is the original representation (9) in terms of the fields Y ,  
Y ' .  The second one is that built in terms of 0, @* using (26), (28). There are good 
reasons to suppose these two representations to be isomorphic. 

First, this is true in the classical limit c + 0 as we have seen in the previous section. 
Second, the vacuum expectations (01 B(u , )  . . . B(uN)  10) can be calculated for both 

representations and have the same value. For the a priori built representation of 
T(u) the calculation is made either with the use of (14a) and taking the Gaussian 
integral (22) or with the use of (28a) and of the commutation relations (27). In the 
case of the original representation T(u)  in terms of Y ,  Y*  the calculation is rather 
cumbersome. It is based on the technique due to Korepin [8] and uses the relation 
2iB(u) = (d' - $8 + %? - 9 ) ( u )  and the properties (ii) and (vi) of F ( u ) .  

The result is the same for both representations and can be formulated as follows. 
Let X ,  - be finite subsets of C,, - respectively, and 1x1 denote the cardinality of X .  Then 

The third test of our hypothesis consists in calculating the eigenstates and eigenval- 
ues of t (u)  using (14b,c) and (28). To describe the result we shall use the same notation 
as in (7). The eigenstates corresponding to the eigenvalues (8) of t (u)  are 

where 

Note that the states IA) in (29) differ from those in (7) by some scalar factors. 



3560 E K Sklyanin 

5. Discussion 

Using the new definition of the monodromy matrix for the infinite interval we have 
succeeded in reproducing the known results concerning the spectrum of the NLS model. 
An advantage of our method as compared to the traditional ones is that it does not 
use the existence of ferromagnetic vacuum,or the highest vector o of T(u) ,  satisfying 
C(u)w = 0. This circumstance allows us to easily apply our method to the models 
with non-ferromagnetic vacuum. In particular, replacing the R matrix (6)  with the 
X X Z  model R matrix one can investigate the sinh-Gordon model [9]. It is challenging 
problem to construct the matrix T(u)  corresponding to the NLS model of finite density 
and temperature or to the Toda chain. It would be interesting also to generalise the 
method to the real forms of sl(2, C) other then sl(2, R ) .  

The crucial problem is the identification of the a priori constructed representations 
T(u)  of the algebra (3) with concrete integrable models. In this connection, a kind of 
the quantum Gelfand-Levitan equation would be useful which could help to express 
the local fields like Y(x), Y ' ( x )  in terms of G+(i). 

There are also a lot of purely mathematical problems concerning the rigorous 
justification of all the conjectures made. In particular, it would be interesting to prove 
directly the completeness of the eigenstates (29). 
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